Караваев Эдуард Федорович
Санкт-Петербургский государственный университет
DOI: 10.24411/2076-8176-2017-11912
В современной эволюционной теории идёт поиск математических инструментов для синтеза различных факторов случайности и детерминизма в эволюции: случайные и (квази-)направленные мутации; отбор и дрейф; эгоистические и альтруистические тенденции в поведении структур на разных уровнях жизни (экосистемном, популяционном, организменном, геномном). Выполненный историко-научный и логико-математический анализ наиболее значимых событий в названном процессе поиска позволяет реконструировать основные этапы в математическом представлении роли случайности в эволюции, оценить предложенные методы. Истоками математического моделирования эволюции стали труды Р. Фишера, А.Н. Колмогорова, Д.Д. Ромашова, А.А. Малиновского в 1930-х гг., в которых были использованы теоретико-игровые идеи и уравнения в частных производных для представления отбора, дрейфа генов, изоляции, размера популяций. В понятии «равновесие Нэша», его автор Дж. Нэш (1949) «предвосхитил» идеи теоретико-игрового моделирования эволюции. У.Д. Гамильтон в 1960-х гг. первым осознанно ориентировался на теорию игр в моделировании внутривидовой конкуренции и оценок приспособленности, зависящей от соотношения частот стратегий. Наиболее значительный вклад в теоретико-игровое моделирование эволюции принадлежит Дж. Мейнарду Смиту. Он ввёл понятие « эволюционно стабильной стратегии » (ЭСС) (1982). Расчёт предложенной Д. Канеманом (2014) процедуры многократного повторения «игры», в которой пропорция проигрыша и выигрыша 50/50, а выигрыш вдвое превышает проигрыш, показывает, что на временнóй шкале эволюции возможна реализация ЭСС. Большое эвристическое значение имеет интерпретация Г.Р. Иваницким (2010) Санкт-Петербургского парадокса, в которой роль «крупье» играет окружающая среда, а роль «игрока» — живая природа: если игрок обладает памятью хотя бы на один раунд, то он может выбирать стратегию изменения ставки в следующем раунде. Отсюда следует, что появление примитивной памяти (хотя бы на один цикл изменения среды), стало величайшим «изобретением» жизни, выделившим её окончательно из неживой природы и обеспечив поступательную эволюцию. И, всё-таки, никакой математический метод (уравнения в частных производных, теория игр, марковские процессы, метод Монте-Карло) не является «всемогущим и безупречным» при моделировании объективной случайности в эволюции.
On the Development of Modern Tools for Modeling of Evolution
Karavaev Eduard F.
Saint-Petersburg State University
DOI: 10.24411/2076-8176-2017-11912
Modern evolutionary theory deals with the search of mathematical tools for the synthesis of various factors of chance and determinism in evolution: random and (quasi-) directed mutation; selection; drift; egoistic and altruistic tendencies in the behaviour of structures at different levels of life (ecosystem, population, organismal, genomic). The historical-scientific and logical-mathematical analysis of the most significant events in the search process allows to reconstruct the main stages in the mathematical representation of the role of chance in evolution, to evaluate the proposed methods. The origins of mathematical modeling of evolution are given in the works of R. Fisher, A.N. Kolmogorov, D.D. Romashov, A.А. Malinovskii in the 1930s, who used game-theoretic ideas and partial differential equations to represent selection, genetic drift, isolation and size of populations. J. Nash “anticipated” the idea of game-theoretic modeling of evolution with his concept of “Nash equilibrium” (1949). W.D. Hamilton in the 1960s, was the first one who consciously focused on game theory in modeling intraspecific competition and assessments of adaptation dependent on the ratio of frequencies of strategies. The most significant contribution to the game-theoretic modeling of the evolution belongs to J. Maynard Smith, who introduced the concept of “evolutionary stable strategy” (ESS) (1982). The calculations corresponding to the repetition of the “game” in which the ratio of losing and winning are 50/50 and win is more than double the loss (proposed by D. Kahneman in 2014), show that ESS is feasible on the time scale of evolution. G.R. Ivanitskii proposed (2010) an interpretation of the St. Petersburg paradox, which is of great heuristic value. In it the environment plays the role of a “dealer”, and the living nature — the role of a “player”. If the player has a memory of at least one round, he can choose a strategy of rate changes in the next round. So, the appearance of primitive memory (at least one cycle of changing the environment), became the greatest “invention” of life that set it apart from inanimate nature and provided ongoing evolution. And, after all, no mathematical method (partial differential equations, game theory, Markov processes, Monte-Carlo) is not “omnipotent and perfect” in the modeling of objective chance in evolution.